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 Taking the advantages offered by smart high-performance electronic devices, 

transradial prosthesis for upper-limb amputees was developed and tested.  

It is equipped with sensing devices and actuators allowing hand movements; 
myoelectric signals are detected by Myo armband with 8 ElectroMyoGraphic 

(EMG) electrodes, a 9-axis Inertial Measurement Unit (IMU) and Bluetooth 

Low Energy (BLE) module. All data are received through HM -11 BLE 

transceiver by Arduino board which processes them and drives actuators. 

Raspberry Pi board controls a touchscreen display, providing user a feedback 
related to prosthesis functioning and sends EMG and IMU data, gathered via 

the armband, to cloud platform thus allowing orthopedic during rehabilitation 

period, to monitor users’ improvements in real time. A GUI software 

integrating a machine learning algorithm was implemented for recognizing 

flexion/extension/rest gestures of user fingers. The algorithm performances 
were tested on 9 male subjects (8 able-bodied and 1 subject affected by 

upper-limb amelia), demonstrating high accuracy and fast responses. 
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1. INTRODUCTION 

This manuscript describes the realization and testing of a transradial prosthesis addressed  

to upper-limb amputees managed by a wireless armband able to detect, through electrodes placed on the skin,  

the myoelectric signals produced by muscle contractions. Each movement is associated to the activation  

of a determined muscular group; thus signals’ processing makes possible the prosthetic hand’s movements. 

The prosthesis can actuate 15 degrees of freedom, three for each finger, with only one motor (instead  

of five-six motors normally used) and uses two servo-motors for wrist flexion/extension  

and prono-supination;the torque is automatically distributed among fingers which adapt to the grasped 

object’s form, so obtaining an optimal grasp [1, 2]. This allows to simplify the control logic and to save on 

prosthesis cost, weight and dimensions, besides obtaining low power consumption and reduced noise.  

Myo armband is a wearable device by Thalmic Labs Inc. with 8 EMG electrodes, a 9-axis IMU (3-axis 

gyroscope, 3-axis accelerometer, 3-axis magnetometer) and BLE transmission module in order to send data 

to HM11 BLE module connected to control Arduino board for driving and managing actuators so allowing 

hand and wrist movements. Each prosthesis’fingertip is equipped with temperature and pressure sensors, 

connected to Arduino board,for providing user a feedback related to the grasped objects, data visualized on  

a touchscreen display installed into the prosthesis socket. A Raspberry Pi board manages the display  

and sends EMG and IMU data via Wi-Fi to a dedicate on-cloud platform to be monitored by orthopedic 
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during user’s rehabilitation as well as post-processed by using Wolfram Mathematica.Myo armband 

is excellent solution for prosthetic applications due to its reliability, ease of use and low cost as shown in 

Figure 1(a); further fields of use concern medicine, robotics or for remotely controlling flying drones  

and robot movements[3]. 

The armband operation is managed by ARM Cortex M4 processor while data transmission  

is performed by BLE NRF51822 chip toward the HM-11 BLE module mounted on bottom side  

of the prosthesis control unit. Myo armband is shown disassembled in Figure 1(b)and its control board in 

Figure 1(c) [4]; two lithium batteries are located into two elements and recharged providing 5V voltage by 

micro-USB connector.Different research studies were conducted on Myo armband suitability for prosthesis 

and virtual reality applications; in [5] it was used with the aim to control PeopleBot robot for reaching  

bio-infected or radioactive environments or for helping disabled people. In [6] Myo armband was used for 

real time EMG data collection in order to control a robotic wheel-chair based on EMG  

and electro-encephalography, confirming its suitability instead of expensive professional EMG devices. 

Other works focused on the improvement of human-machine interaction obtained by using devices similar to 

Myo armband and pattern recognition's algorithms [7-10]. Figure 2 shows two robotic arms controlled by 

user wearing the Myo armband; specifically by opening/closing his hand, user controls robotic hand’s 

opening/closing (a), while in Figure 2(b) by two Myo bracelets, user’s arm orientation and gestures allow to 

pick up and manipulate objects. 

 

 

  
   

(a) (b) (c) 
   

Figure 1. (a) Myo armband, (b) Its 8 EMG electrodes with other components and ST78589 OA located into 

each armband element for amplifying signals provided by electrodes , (c) Control board into armband 
 
 

  
  

(a) (b) 
  

Figure 2. (a) A robotic arm controlled by user wearing Myo armband (source: 

forschungszentruminformatik), (b) Industrial robotic arm controlled by two myo bracelets 

 

 

2. RESEARCH METHOD 

2.1. Devices and circuital solutions to drive and control prosthesis motion 

The different electronic modules, realized and used in the prosthetic limb, are detailed below.  

The electronic section for motor driving and prosthesis control is located in the upper side of the prosthetic 

hand, while pressure and temperature sensors are placed into the fingertips. A touchscreen display, positioned 

on the forearm, is employed to manage prosthesis and visualize data or error messages. Figure 3(a) shows  

a functional scheme with employed modules connected to the driving and control board. The Myo armba nd 

is arranged on the upper side of user forearm; it acquires myoelectric signals by EMG electrodes and sends 

data to the control unit. The Arduino Micro board was chosen for its features suitable for this specific 
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application: it is light and small so eas ily insertable into prosthesis, enables the simple performing of all  

the tasks needed for the right operation of the prosthesis and its power consumption is low, thus extending 

battery life [11].Figure 3(b) shows the connection scheme of the Arduino board with employed 

modules, sensors and actuators; the communication with HM-11 BLE module is implemented through serial 

interface with TX/RX pins, the analog FSR400 pressure and LM35 temperature sensors are connected to 

analoginputs of embedded ADC with a capacitor referred to ground for noise and electromagnetic 

interferences rejection [12]. 
 

 

 
 

(a) 
 

 
 

(b) 
 

Figure 3. (a) Used modules: Myo armband, raspberry board, DC motor, two servomotors, temperature  

and force sensors, all interfaced with Arduino, (b) Connections between Arduino and modules, sensors  

and actuators 
 

 

The DC and servo motors are controlled by dedicated output pins for PWM signals generation  

in order to manage and adjust motors’ actuation. ACS712 analog current sensor is employed for measuring 

the current absorbed by DC motor to adjust the force applied by prosthesis’ fingers on the grasped 

objects.The LM35 temperature sensor are installed in each fingertip and the measured values are rep orted  

on the display which represents a feedback on grasped objects’ temperature besides over limit temperature 

warning given by vibration that would not be otherwise detectable by user. In addition, a pressure resistive 

sensor equips each fingertip (FSR 40 from Interlink Electronics) to acquire pressure that the prosthetics’ 

fingers exert on grasped object; adding these data to current absorbed from DC motor, it is possible to grip 

any object typology without damaging it. The ACS712 is a Hall effect current sensor and is used to sense  

the current flowing into its integrated path, as shown in Figure 4(a). The used breakout board is composed  

of two ICs: the ACS712 and OPA344 to amplify voltage signal provided by ACS712 sensor Figure 4(b). 
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Temperature and pressure sensors give information on the exerted pressure and grasped object’s temperature 

whereas current's control allows to avoid crushing the tea can or to grip a pen Figure 5(a) and (b) [13].  

The Maxon DCX-19-S motor, employed to actuate fingers, is interfaced with a controller, provided of power 

supply unit to feed DC and servo-motors (5-6V), and to SN754410NE DC motor driver. Figure 5(c) shows 

the connection scheme of Arduino board with ACS712 current sensor and DC motor driver 

Two Futaba S3305 servomotors actuates the wrist, one for hand prono-supination and the second 

for performing wrist flexion/extension; they are powered and driven from the control board by 6V DC supply 

voltage and two 50Hz PWM signals. A PID regulator, by means of the angular p osition detected through  

a rotary encoder, holds the angular position of the motor shaft constant, thus leading to zero the position erro r 

even in presence of applied forces (within motors’ power and torque limits). The graphs reported  

in Figure 6 show the rotation speed and absorbed current as functions of exerted torque. The DC motor,  

used for fingers movement, requires a supply voltage of6V;the LT1086 linear voltage regulator  

receives 7.2 V from lithium-Ion battery and provides the required voltage. In order to obtain a stabilized 

voltage and reduced noise, high-value electrolytic capacitors were added able toavoid voltage drops during 

the maximum current absorption. Considering worst case (peak-torque condition), the current absorbed  

by DC motor and each servomotor is respectively 1.2A and 1.07A; since the control logic allows actuating 

motors one at a time, the maximum current to be guaranteed is 1.2A and LT1086 satisfies  

this requirement. Since input and output current are equal (IIN=IOUT), the LT1086 efficiency  

was estimated: =
𝑃𝑙𝑜𝑎𝑑/

𝑃𝑡𝑜𝑡
=

𝐼𝑜𝑢𝑡∗𝑉𝑜𝑢𝑡

𝐼𝑖𝑛∗𝑉𝑖𝑛
=

𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
=

6

7.2
≅ 0.833 = 83.3%. 

 
 

 
 

(a)  

 

 
 

(b) 
 

Figure 4. (a) Inner scheme of ACS712 IC current sensor, (b) Circuital scheme of breakout board  

with ACS712 sensor and OPA344 IC that amplifies voltage supplied by ACS712 sensor 
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(a) (b) 

  

 
 

(c) 

 

Figure 5. (a-b) The control on DC motor absorbed current allows to manage applied force in object grasping, 

(c) Circuital connections between Arduino board, ACS712 current sensor and SN754410NE  

motor driver 

 

 

 
 

Figure 6. Graphs related to servo-motors rotation speed and absorbed current as functions of exerted torque 

 

 

Since difference between input and output voltages is low, the LT1086 power dissipation results: 

𝑃𝑑𝑖𝑠𝑠 = 𝐼𝑜𝑢𝑡 ∗ (𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡) = 1.2𝐴 ∗ 1.2𝑉 = 1.44𝑊  in case of 1.2A peak current. The junction thermal 

resistance is 50°C/W (as reported in LT1086 datasheet); therefore, known the power dissipation and working 

temperature (25°C), the junction temperature results: 𝑇𝑗 = (𝑃𝑑𝑖𝑠𝑠 ∗ 𝑅𝑡) + 𝑇𝑎 = (50° 𝐶 𝑊⁄ ∗ 1.44𝑊) + 25°𝐶 = 97°𝐶 . 
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For correct functioning, the junction temperature should not exceed 150°C, thus a heatsink was not required, 

but for ensuring a low working temperature and thus long device life-time, a small heatsink was installed. 

In order to give user the possibility to control, view and also s end via Wi-Fi to the cloud platform  

the device’s usage data, a Raspberry Pi board was placed into an internal compartment [13] , it manages  

a 3.5” LCD touch-screen display to visualize battery level and sensors data, to set prosthesis preferences and 

to manage Wi-Fi connectivity. The Raspberry board is able to provide remote access to several 

functionalities, such as technical assistance for software update regarding the operating system or control 

board firmware; in addition the orthopedic staff can follow the amputee remotely, giving him assistance in 

real time. Raspberry board requires a supply voltage of 5V, while the used OttoBock  battery provides 7.2 V; 

hence a step-down switching voltage regulator is used Figure 7(a) able to provide high current value (up to 

2A as required from Raspberry board) with 80% efficiency. It employs LM2596 IC provided with a mosfet 

which converts the input voltage in a kHz-frequency square wave, then filtered by a low pass filter. 

Two electrolytic capacitors (C1, C2) at circuit’s input and output are used for voltage stabilization; VR1 

trimmer allows to adjust the output voltage while the schottky diode (D1) acts as protection. A disadvantage 

of switching regulators is the output ripple, critical for supplying analog sensors but negligible in this case 

(with digital devices).  

The touch-screen display connected to Raspberry board is mounted into prosthesis socket;  

in Figure 7(b) an alert message related to a high temperature detected from the index fingertip is reported.  

At the screen bottom, the five preset hand poses are shown; when Myo armband recognizes one of these,  

the corresponding circle lights up, giving user a visual feedback of the performed action, useful during  

the training phase. On the right side, in addition to information on Wi-Fi/Bluetooth connectivity and battery 

level, a customizable area is left to be personalized by user. The Arduino board communicates with 

Raspberry by RS232 serial interface sending data related to EMG electrodes (with 200Hz frequency),  

to the IMU and to the five pressure (with 50Hz frequency) and temperature sensors (with 1Hz rate); all these 

data are stored on the SD card of Raspberry board. An executable script was developed by using Wolfram 

Mathematica software installed on Raspberry board to visualize in real-time, after filtering of corrupted data, 

the forearm muscular activity and signals provided by IMU [14]. Then, processed data are sent on the cloud 

platform to be remotely monitored by orthopedic [15, 16]. Figure 8(a) reports used boards and devices 

highlighting connections between them. 

Battery autonomy is a critical point for portable devices especially for wearable ones as the realized 

prosthesis, becoming a fundamental aspect for patient quality of life and comfort. A lithium-Ion battery, 

model 757B20 produced by OttoBock, was used, featured by 900mAh capacity (i.e. 6.5Wh), 3.5h recharge 

time, provided voltage of 7.2V, 65g weight and operative temperature 0-50°C Figure 8(b). The power 

consumption of each powered device is reported following: 7.2W for DC motor, 12.8W for two servomotors, 

180mW for Arduino board, 33mW for HM-11 BLE module, 1.5mW and 12.5mW respectively for all 

temperature and pressure sensors. Raspberry board consumption is 4W, touch-screen display 330mW, 1.44W 

is related to voltage regulator for motor power supply and 0.87W for switching regulator. It is possible to 

calculate a weighted average of power consumption (Pavg) making the sum of all consumptions multiplied by 

usage-time percentages obtaining about 1.4W; since battery energy is 6.5Wh, its autonomy results 4.6 hour. 

 

 

  
  

(a) (b) 

  

Figure 7. (a) DC/DC step-down converter used to feed Raspberry Pi board (top left) and the related 

circuital scheme, (b)touchscreen display reporting sensors data and feedback messages for user 
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(a) (b) 
  

Figure 8. (a) Employed modules and actuators: user rehabilitation is remotely monitored by the 

orthopedic, (b) Realized prosthesis with the lithium-Ion battery in the zoomed box and its housing into 

prosthesis socket 
 

 

2.2. Developed Firmware for data acquisition and prosthesis control 

In this section, the methods developed to get correct functioning of prosthetic hand are explained;  

the firmware employs a library (MyoBridge) which integrates numerous methods (setEMGDataCallBack  for 

EMG data, setIMUMotionCallBack  and setIMUDataCallBack  for IMU data and setPoseEventCallBack  for 

poses data) that allow data exchange between Myo armband and Arduino board. The implemented  firmware 

can be divided in three groups: the first one comprises functions that manage poses data (handlePoseData()), 

IMU (handleIMUData()) and EMG data (handleEMGData()) (as shown in Figure 9(a)); the second group  

is related to functions that manage pressure (updatePressure()) and temperature (update Temperature()) 

sensors data; the last group comprises functions for motors managing (updateServo1() and updateServo2() 

for servomotors and updateDCMotor() for DC motor) [17]. A further function (ResetMotors()) resets  

the motors to their base position(hand rest). Following the developed functions are analyzed. 

− handlePoseData() function:the prosthesis movements are managed by exploiting five predefined poses 

(spread fingers, make fist, wrist flexion, wrist extension, fingers touch) recognized by the armband thanks 

to data provided by EMG electrodes and 9-axis IMU [18, 19]. When the armband recognizes a preset 

pose, a callback  event is transmitted to Arduino microcontroller and by the setPoseEventCall Back()  

function, performed pose is identified. The handlePoseData() function converts MyoPoseData into  

a MyoPose object, for managing the wrist extension/flexion and to control hand opening/closing.  

A further if structure, related to fingers touch pose, resets the servomotors and DC motor positions, 

obtaining hand rest position. 

− handleIMUData() function: the 9-axis IMU provides data related to arm prono-supination, to properly 

drive the servomotor employed for wrist rotation. When the armband has to provide the se data,  

an interrupt is generated and recognized by Arduino that executes handleIMUData()  function where  

the magnetometer values expressed in quaternions are converted into roll, pitch and yaw angles.  

Also, in the same function, the accelerometer and gyroscope data are stored and transmitted through serial 

connection to Raspberry. 

− handleEMGData() function:it is recalled when data related to EMG electrodes are received from Arduino 

board and then sent to Raspberry board for further processing. 

The functions to process analog signals from LM35 temperature and FSR400 pressure sensors  

are described following. Since Arduino ADC has 10bit resolution, values returned by the analogRead() 

function range from 0 to 1023, in order to map these values to the desired interval (e.g 0-500 °C for 

temperature), the Arduino library’s map() function was used; since temperature varies slowly, a 1 Hz 

sampling rate was adopted ensuring both low processing load and power consumption.  

The updateTemperature() function processes LM35 sensors data in order to warn user in case of high 

temperatures by means of vibration of Myo armband. 

− updatePressure() function:it processes data of pressure FSR400 resistive s ensors with a 50Hz sampling 

rate of the analog signals. The voltage values obtained from the map() function are converted in resistance 
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by the voltage divider formula. Then, by using the pressure/resistance FSR400 characteristic, the force or 

pressure exerted by the bionic hand is obtained; Figure 9(b) shows the function’s flowchart. Thus the 

pressure values are used to control the gripping force and to detect any slipping of the grasped object.  

Functions for motors managing are described below; the functional diagram is shown in Figure 9(c). 

− updateServo1() function: it is used to control wrist flexion/extension and is recalled if a contraction 

of the wrist flexors/extensors muscles, corresponding to Wave left or Wave Right poses respectively,  

is recognized by handlePoseData()  function. The function receives as input a determined angular value, 

depending on the received pose, and recalls a Servo library method providing the PWM signal for driving  

the servomotor. 

− updateServo2() function:it is used to drive the second servomotor needed to actuate the wrist rotation 

controlled by the yaw angle got by handleIMUData() function. To avoid motor vibrations due to high 

magnetometer sensitivity, it is executed after set time interval providing an average value of the  

yaw angle. 

− updateDCMotor() function: it is recalled whenever the Make Fist or Spread fingers poses are recognized, 

so that the motor rotates clockwise closing fingers, or counterclockwise to make the fingers open.  

If the absorbed current or pressure exerted by fingertips exceeds a preset threshold, the motor  

is switched off. 

− ResetMotors() function:it is called whenever the Fingers Touch pose is detected by the handlePoseData( )  

function; in this case, the three motors return to their default position bringing the hand to the rest 

position. Numerous objects with different forms, dimensions and stiffness were correctly gripped and data 

related to temperature and pressure acquired by sensors integrated into fingertips, shown on  

the PC terminal. 

 

 

 
 

(a) 

 

 
 

(b) 

 
 

(c) 

 

Figure 9. (a) Diagram related to functions implemented to manage the poses, IMU and EMG data , (b) 

Flowchart of the update Pressure() function, (c) Functional diagram related to motors driving 
 

 

3. RESULTS AND DISCUSSION 

3.1. Real experiments and on subjects  

In the carried out experiments, the RAW data from the Myo armband were analyzed and elaborated. 

The myoelectric control of the prosthetic limb was tested through the hardware and software system,  

which includes the electronic board, described above, for acquiring the EMG signals from Myo armband  

and GUI software integrating a machine learning algorithm that enables the recognition of 

flexion/extension/rest gestures of the user’s fingers [20, 21]. The algorithm performances have been tested on 

9 male subjects (8 able-bodied and 1 subject affected by congenital upper-limb amelia at the right forearm). 
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The results obtained by the classification procedure show high accuracy (90.4±2.4%) and fast responses (< 1s 

for 97.4±2.0%). Consequently, these performances show that the machine learning algorithm  

is accurate and fast. A GUI software was developed (see Figure 10) for managing the following steps: 

- EMG acquisition: the 8 EMG double differential channels are streamed from Myo  device to the serial 

port of PC by means of the electronic board. 

- EMG processing: raw signals are band-pass filtered (10-280 Hz, 50 elements FIR digital filter), full-wave 

rectified and low-pass filtered (1 Hz, 50 elements FIR digital filter) to obtain the signal envelopes. 

- Training phase: each subject was asked to perform three different gestures with hand fingers (10 seconds 

of flexion, 10 seconds of extension, and 10 seconds of rest), while EMG signals were acquired, processed 

and windowed into 500 ms epochs which were given as input to the machine learning algorithm, in order 

to obtain the proper weights for flexion/extension/rest gesture classification. 

- Gesture recognition: after performing the training phase, EMG signals were acquired, processed  

and windowed into 500 ms epochs in real time. For each epoch, the machine learning algorithm classifies  

the hand fingers gesture as flexion, extension or rest [22-24]. 

For evaluating the algorithm performances, N=8 able-bodied male participants (mean age of 30.30 ± 

4.96 years, mean height of 177.75 ± 5.55 cm, mean weight of 74.86 ± 11.31 kg, mean BMI of 23.70 ± 3.42 

kg/m2) were recruited. Myo armband was worn by each subject and, after a  training phase, they performed 

a series of 10 flexions and extensions in random manner; for each gesture, the GUI software registered EMG 

signals and gesture recognition was considered as correctly detected if the algorithm recognizes it within 1sec 

since the gesture execution. Afterwards, the same test was performed by a subject affected by a congenital 

upper-limb amelia at the right forearm (male, 27.23 years old, 195 cm, 82 kg, BMI of 21.26 kg/m2) [24, 25]. 

The accuracy of gesture recognition was calculated as the percentage of gesture correctly classified. Finally, 

the results obtained by the classification procedure are shown in the following Table 1.  

 

 

 
 

Figure 10. GUI software for EMG recording, processing and gesture recognition of fingers flexion, extension 

or rest. EMG signals are shown in real time and gesture is classified each 500 ms with no -detectable delay 

 

 

Table 1. Performances of gesture recognition algorithm to detect flexion, extension and rest of hand fingers 

by EMG signals analysis (* Subject 9 affected by congenital upper-limb amelia at the right forearm) 

 Recognition accuracy (%) T ime response < 1 s (%) 

 Flex Ext Rest Average Flex Ext Rest Average 

Subject 1 90 100 90 93,3 100 100 100 100,0 
Subject 2 90 80 100 90,0 90 100 100 96,7 
Subject 3 80 90 90 86,7 100 90 100 96,7 
Subject 4 100 90 100 96,7 100 90 100 96,7 
Subject 5 90 80 90 86,7 90 100 100 96,7 
Subject 6 70 90 90 83,3 100 100 100 100,0 
Subject 7 90 100 80 90,0 90 100 100 96,7 
Subject 8 90 90 100 93,3 90 100 90 93,3 

Subject 9* 90 100 90 93,3 100 90 100 96,7 
Mean 87,8 91,1 92,2 90,4 95,6 96,7 98,9 97,0 

St. dev. 8,3 7,8 6,7 4,2 5,3 5,0 3,3 2,0 
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4. CONCLUSION 

In this work, the electronic system of a prosthetic limb controlled by wireless myoelectric armband 

was realized. The prosthesis provides to the user feedback from the surroundings such as objects temperature 

and grip force applied by fingers on grabbed objects; it was designed in modular way to be adapt to different 

amputees types, thus satisfying a larger users category. The usage of a single motor to handle the whole hand  

allows to simplify the prosthesis control as well as to save on its cost and weight . EMG and IMU data are 

monitored remotely by the orthopedic that follows user rehabilitation by the Wi-Fi connectivity provided by 

Raspberry. An algorithm based on machine learning was implemented and real experiments conducted: 

the recognition of hand ges tures was tested on 9 subjects (one affected by congenital upper-limb amelia). 

Results obtained by the classification procedure show high accuracy and fast responses also for amputee 

subject, meaning that the algorithm works fine also on subject with small not-trained muscles. 

Future developments will consist in improving the control algorithm by exploiting EMG signal intensity, 

controlled by user after training procedure, to implement a closed-loop control to be able to apply desired 

force to grasped objects. 

 

 

REFERENCES 
[1] G. Zappatore, et al., “Adam’s Hand: An underactuated robotic end-effector,” inAdvances in Italian Mechanism 

Science: Mechanisms and Machine Science, vol. 47, pp. 239-246, 2016. 

[2] G. Zappatore, et al., “Analysis of a highly underactuated robotic hand,” inInternational Journal of Mechanics and 
Control, vol. 18, pp. 17-23, Dec. 2017. 

[3] P. Visconti, et al., “Technical features and functionalities of M yo armband: An overview on related literature and 

advanced applications of myoelectric bracelets mainly focused on arm prostheses,” in International Journal on 

Smart Sensing and Intelligent Systems, pp. 1-25, Feb. 2018. 

[4] F. Gaetani, et al., “Design of an Arduino-based platform interfaced by Bluetooth low energy with Myo armband for 
controlling an under-actuated transradial prosthesis,” in 2018 International Conference on IC Design & Technology 

(ICICDT), pp.185-188, 2018. 

[5] G. D. Morais, et al., “Application of Myoarmband system to control a robot interface,” in Proc. of9th Int. Conf. on 

BiomedicalEngineering Systems and Technologies, vol. 4, pp. 227-231, 2016. 

[6] G. Kucukyildiz, et al., “Design and implementation of a multi sensor based brain computer interface for a robotic 
wheelchair,” in Journal of Intelligent and Robotic System, vol. 87, pp. 247-263, Jan. 2017. 

[7] M. Havlikova, et al., “A Man as the Regulator in Man-Machine Systems,” inAdvances in Electrical and Electronic 

Engineering, vol. 12, pp. 469-475, Dec. 2014. 

[8] A.V. Le, et al., “Human detection system by fusing depth map-based method and convolutional neural network-

based method,” in Advances in Electrical and Electronic Engineering,vol. 15, pp 648-656, Nov. 2017. 
[9] M. M.-. Vidovic, H. Hwang, S. Amsüss, J. M. Hahne, D. Farina and K. Müller, "Improving the robustness of 

myoelectric pattern recognition for upper limb prostheses by covariate shift adaptation," in IEEE Transactions on 

Neural Systems and Rehabilitation Engineering, vol. 24, no. 9, pp. 961-970, Sept. 2016. 

[10] Y. Fang, N. Hettiarachchi, D. Zhou and H. Liu, "Multi-modal sensing techniques for interfacing hand prostheses: A 

review," in IEEE Sensors Journal, vol. 15, no. 11, pp. 6065-6076, Nov. 2015. 
[11] P. Visconti, et al., “Arduino-based solution for in-car-abandoned infants' controlling remotely managed by 

smartphone application,” in Journal of Communications Software and Systems, vol. 15, no. 2, pp. 89-100, 

Jun. 2019. 

[12] P. Visconti, A. Lay-Ekuakille, P. Primiceri, G. Ciccarese and R. de Fazio, "Hardware design and software 

development for a white LED-Based experimental spectrophotometer managed by a PIC-Based control system," in 
IEEE Sensors Journal, vol. 17, no. 8, pp. 2507-2515, 15 April15, 2017. 

[13] P. Visconti, et al., “Design and testing of electronic control system based on STM X-Nucleo board for detection and 

wireless transmission of sensors data applied to a single-seat Formula SAE car,” in International Journal of 

Electronics and Telecommunications, vol. 65, no. 4, pp. 671-678, Jun. 2019. 

[14] N.A. Nayan, et al., “Development of respiratory rate estimation technique using electrocardiogram  
and photo-plethysmogram for continuous health monitoring,” inBulletin of Electrical EngineeringandInformatics 

(BEEI), vol.7, no.3, pp. 487-494, Sep. 2018. 

[15] S.A. Hameed, et al., “Application of mobile cloud computing in emergency health care,” in Bulletin of Electrical 

Engineering and Informatics (BEEI), vol. 8, no. 3, pp. 1088-1095, Sep. 2019. 

[16] J. Too, et al., “Featureless EMG pattern recognition based on convolutional neural network,” in Indonesian Journal 
of Electrical Engineering and Computer Science, vol. 14 no. 3, pp. 1291-1297, June 2019. 

[17] P. Primiceri, et al., “Hardware and software solution developed in ARM mbed environment for driving and 

controlling DC brushless motors based on ST X-NUCLEO development boards,” in Int. Journal on Smart Sensing 

and Intelligent Systems, vol. 9, no. 3, pp. 1534-1562, Sep. 2016. 

[18] T. Triwiyanto, et al., “Embedded system for upper-limb exoskeleton based on electro-myography control,” in 
TELKOMNIKA (Telecommunication, Computing, Electronics and Control), vol. 17 no. 6, pp. 2992-3002,  

Dec. 2019. 

[19] J. Too, et al., “Application of gabor transform in the classification of myoelectric signal,” TELKOMNIKA 



          ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 9, No. 2, April 2020 :  514 – 524 

524 

(Telecommunication, Computing, Electronics and Control), vol. 17 no. 2, pp. 873-881, April 2019. 

[20] M. R. Mohamad Ismail, et al., “Hand motion pattern recognition analysis of forearm muscle using MMG signals,” 
Bulletin of Electrical Engineering and Informatics (BEEI), vol. 8, pp. 533-540, Aug. 2019. 

[21] A. M. NajlaIlyana, et al., “Analysis of surface electromyography for hand gesture classification,” in Indonesian 

Journal of Electrical Engineering and Computer Science, vol. 15, no. 3, pp. 1366-1373, Sept. 2019. 

[22] M. Azlan Abu, et al., “Classification of EMG signal for multiple hand gestures based on neural network,” 

inIndonesian Journal of Electrical Engineering and Computer Science, vol. 17 no. 1, pp. 256-263, Jan. 2020. 
[23] G.W. Nie, et al, “Deep stair walking detection using wearable inertial sensor via long short-term memory network,” 

Bulletin of Electrical Engineering and Informatics (BEEI), vol. 9, pp. 238- 246, Feb. 2020. 

[24] N. Abdul Malik, et al., “Investigation of lower limb’s muscles activity during performance of salat between two age 

groups,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 14,no.2, pp. 608-617,  

May 2019. 

[25] J. Too, et al., “A Detail Study of Wavelet Families for EMG Pattern Recognition,”in International Journal of 

Electrical, vol. 8, no. 6, pp. 4221-4229, Dec. 2018. 


